Bilgisayar Bilimine Giriş

Toros Rifat ÇÖLKESEN
Ahmet ACAR
Ali OKATAN
Osman ALİEFENDİOĞLU
Mesut RAZBONYALI
Ali NİZAM
Erhan SARIDOĞAN
Cengiz UĞURKAYA
Zeki ÖZEN
Elif KARTAL
Sevinç GÜLSEÇEN
Gökhan SİLAHTAROĞLU
Atınç YILMAZ

Editör: Toros Rifat ÇÖLKESEN

Yardımcı Editör: Osman ALİEFENDİOĞLU

© PAPATYA YAYINCILIK EĞİTİM

Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi No: 11/6, Cağaloğlu (Fatih) / İstanbul

Tel : (+90 212) 527 52 96 (+90 532) 311 31 10

Faks : (+90 212) 527 52 97

e-mail : admin@papatyabilim.com.tr Web : www.papatyabilim.com.tr

Dağıtım : TDK Bilim - www.tdk.com.tr

Bilgisayar Bilimine Giriş – Editör: Toros Rifat Çölkesen (Ph. D)

Yardımcı Editör: Osman Aliefendioğlu (Ph. D)

1. Basım Ekim 2017

Yayına Hazırlayan : Cengiz UĞURKAYA (Ph. D)

Üretim : Necdet AVCI
Pazarlama : Mustafa DEMİR

Satış : TDK Bilim www.tdk.com.tr

Sayfa Düzenleme : Müge URCAN, Papatya ve Kelebek Tasarım
Basım ve Ciltleme : Özkaracan Matbaacılık (Sertifika No: 12228)

Evren Mah. Gülbahar Cad. No:62 Güneşli/İstanbul

© Bu kitabın her türlü yayın hakkı yayınevine aittir. Yayınevinden yazılı izin alınmaksızın alıntı yapılamaz, kısmen veya tamamen hiçbir şekil ve teknikle ÇOĞALTILAMAZ, BASILAMAZ, YAYIMLANAMAZ. Kitabın, tamamı veya bir kısmının fotokopi makinası, ofset vs. gibi teknikle çoğaltılması, hem çoğaltan hem de bulunduranlar için yasadışı bir davranıştır. Emeğe saygı hepimizin ortak tutumu olmalıdır. İzinsiz fotokopi ile çoğaltmak hırsızlıktır.

Cölkesen, Toros Rifat.

Bilgisayar Bilimine Giriş / Toros Rifat Çölkesen – İstanbul: Papatya Yayıncılık Eğitim, 2017

xxii, 768 s. ; 24 cm Kaynakça ve dizin var.

ISBN 978-605-9594-08-0

 Boole Cebri 2. Yapay Zeka 3. Veri Madenciliği 4. Algoritmalar 5. Bilgisayar Mimarisi I. Title

QA76.9.D35 C64 2015

Bu kitabımızı, Türk bilgisayar bilimi dünyasına katkıları büyük olan

saygıdeğer hocalarımız;

Prof. Dr. Bülent Örencik

Prof. Dr. M. Nadir Yücel

Prof. Dr. Aydın Köksal

Prof. Dr. Haldun Akpınar

Prof. Dr. Atilla Bir

Prof. Dr. Tuncer Ören

Prof. Dr. Ünal Yarımağan

Prof. Dr. Ali Saatçi

Prof. Dr. Emre Harmancı

Prof. Dr. Oğuz Manas'a ithaf ediyoruz.

Teşekkür

Herşeyden önce böylesi bir esere katkı veren bölüm yazarı hocalarımıza sonsuz teşek-kür ederim. Bilgisayar bilimi; bilgisayar mühendisliği, yazılım mühendisliği, matematik bilgisayar ve yer yer elektronik mühendisliği için önemli temel konulardan birisidir. Ayrıca, bilgisayar bilimi söz konusu disiplinlerde birçok ders için de temel bilgileri kapsar, onlar için alt yapı oluşturur.. Herşeyden önce bu konuların önemini bizlere öğrenciliğimizden beri aşılayan Sayın *Prof. Dr. M. Nadir Yücel* hocamıza teşekkür ederim.

Yeni kavramlara karşılık bulmada zorlandığım her zaman, daha doğrusunu bulmak adına, gece gündüz demeden hemen arayıp görüşünü aldığım sevgili ağabeyim, saygıdeğer hocam dilbilim üstadı Sayın *Yusuf Çotuksöken* hocamıza ve Sayın *Prof. Dr. V. Doğan GÜNAY* hocamıza da çok teşekkür ederim.

Her şeyin daha da güzelleşmesi dileğiyle...

Toros Rifat ÇÖLKESEN İstanbul

İçindekiler

Önsöz	xix
Kitap Hakkında	xxi
Kullanılan Kısaltmalar	xxi
Bölüm 1. Bilgisayar Bilimine Kısa Bir Bakış	23
1.1. Bilgisayar Bilimi Hangi Konuları İçerir	25
1.2. Bilgisayar Bilimi Temel Konuları	26
1.2.1. Sayılar Teorisi	27
1.2.2. Olasılık Teorisi ve Rastgele Olaylar	27
1.2.3. Graf Teorisi	28
1.2.4. Ağaçlar ve İkili Arama Ağacı	29
1.2.5. Stokastik Süreçler ve Markof Zinciri	29
1.2.6. Ağaçlar ve İkili Arama Ağacı	30
1.2.7. Veri Modelleri ve Veri Yapıları	30
1.2.8. Boole Cebri ve Lojik Devre Tasarımı	31
1.3. Uygulamalı Bilgisayar Bilimi Konuları	32
1.3.1. Yapay Zekâ ve Uygulamaları	32
1.3.2. Veri Madenciliği ve Ambarları	32
1.3.3. Kodlama ve Algoritmalar	32
1.3.4. Sayısal Haberleşme ve İnternet Hizmetleri	33
1.3.5. Yazılım Mühendisliği ve Yazılım Proje Yönetimi	34
1.3.6. Veritabanı Sistemleri ve İlişkisel Veritabanı	34
1.4. Bilgisayar Bilimiyle Çözülebilen Bazı Problemler	36
1.4.1. Sosyal İlişki Grafi Problemi	36
1.4.2. Yolbulan (Navisgasyon) Uygulaması Problemi	39
1.4.3. Çakışmadan Sınav Yerleştirme Problemi	41
Bölüm 2. Kuramsal Matematik	43
Toros Rifat ÇÖLKESEN ve Ahmet ACAR	
2.1. Ayrık Matematiğin Önemi	43
2.2. Kümeler Teorisi	44
2.2.1. Kümelerle İlgili Temel Tanımlar	44
2.2.2. Kümeler Üzerine İşlemler	46
2.3. Bağıntılar ve Fonksiyonlar	49
2.3.1. Bağıntılar ve İfade Sekilleri	49

2.3.1.1. İkili Bağlantının Matrisle İfadesi	51
2.3.1.2. Bağıntı Türleri	53
2.3.2. Fonksiyonlar ve İfadesi	55
2.3.3. Fonksiyon Türleri	56
2.3.4. Rekürsif Fonksiyonlar	58
2.3.5.1.Öklid Algoritması	59
2.4. Graf Teorisi	60
2.4.1. Grafların İfadesi ve Çeşitli Graf Tanımları	60
2.4.2. Gezgin Satışçı Problemi	64
2.4.3. Graf Üzerinde Dolaşma	64
2.5. Sayılar Teorisine Giriş	65
2.5.1. Tümevarım İlkesi: İyi Sıralanma İlkesi – Bölme Algoritması	65
2.5.2. Bölünebilirlik	67
2.5.3. Asal Sayılar ve Bileşik Sayılar	68
2.6. Olasılık Teorisi	70
2.6.1. Kombinatorik ve Olasılığın Ayrık Problemleri	70
2.6.2. Kombinatoriğin Temelleri: Permütasyon ve Kombinasyon	71
2.6.3. Temel Olasılık ve Rastgele Olaylar	76
2.6.4. Stokastik Süreçler ve Markof Zinciri	78
2.7. Ağaçlar ve Bilgisayar Mühendisliği	80
2.7.1. Ağaç Yapısı İfadesindeki Temel Kavramlar	80
2.7.2. Bilgisayar Mühendisliğinde Çok Kullanılan Çeşitli Ağaçlar	83
2.8. Matris İşlemleri ve Determinant	84
2.8.1. Matrislerin Genel Özellikleri	85
2.8.2. Matrisler Üzerinde Elemanter İşlemler	86
2.8.3. Özel Anlamlı Matrisler	88
2.8.4. Matrislerin Determinantı	90
2.8.5. Matrisin Rankı	93
2.8.6. Ters Matris Hesabı	94
2.9. Çalışma Soruları	95
Bölüm 3. Boole Cebri ve Bilgisayar Bilimi	97
Toros Rifat ÇÖLKESEN	
3.1. Boole Cebrinin Aksiyom ve Teoremleri	99
3.1.1. Boole Cebri Aksiyomları	99
3.1.2. Boole Cebri Teoremleri	100
3.2. Boole Cebri Fonksiyonları	106
3.2.1. Minterm ve Maksterm ile Lojik İfadeler	108
2 2 2 Kanonik Rigimlar Arasındaki Dönüsüm	111

3.3. Lojik İfadeler ve Lojik Devreler	112
3.3.1. Lojik İşlemlerin Donanımsal Karşılığı	113
3.3.2. Boole Cebri Fonksiyonlarının Lojik Kapılar ile Gerçekleştirilmesi	115
3.4. Boole Cebri Fonksiyonlarının İndirgenmesi	116
3.4.1. Doğrudan Aksiyom ve Teoremlerle Görüşe Dayalı İndirgeme	117
3.4.2. Karnaugh Diyagramıyla İndirgeme	119
3.4.3. Quin Mc Cluskey Yöntemiyle Algoritmik İndirgeme	129
3.4.4. Eksik Mintermli Boole Cebri Fonksiyonları	134
3.5. Boole Cebri Fonksiyonlarının Tek İşlemle Gerçekleştirilmesi	135
3.5.1. Çarpımların Toplamıyla TVE ve TVEYA Tasarımı	135
3.5.2. Toplamların Çarpımıyla TVE ve TVEYA Tasarımı	137
3.6. Özet	139
3.7. Çalışma Soruları	139
Bölüm 4. Bilgisayar Mimarisi ve Bilgisayar Donanımı	143
Ali OKATAN ve Osman ALİEFENDİOĞLU	
4.1. Donanım ve Bilgisayar Mimarisi	144
4.2. Bilgisayar Mimarilerinin Sınıflanması	146
4.2.1. Komut Düzeyinde Paralellik ve Pipeline Komut Yürütme	148
4.2.2. von Neumann ve Harvard Mimarileri	149
4.2.3. RISC ve CISC işlemciler	151
4.3. Mikroişlemciler ve Assembly Dili	152
4.3.1. Örnek bir İşlemci İç Yapısı	153
4.5. Örnek Mimariler	154
4.5.1. İntel Ailesi ve Pentium İşlemciler	154
45.2. Motorola Ailesi ve 680xx İşlemcileri	155
4.3.3. UltraSRAC II	155
4.6. Saklayıcı Aktarım Dili4.7. Donanım Tanımlama Dilleri	156
4.8. Donanim Benzetim ve Tasarım Yazılımı	157 159
4.8.1. Benzetim Ortamları	160
4.9. Algoritmik Yaklaşımla Örnek Donanım Tasarımı	161
4.9.1. Örnek Basit Bir Mikroişlemci Tasarımı	162
4.10. VLSI Tasarımı	168
4.11. Örnek Bilgisayar Sistemleri	169
4.11.1. Taşınabilir Bilgisayar Sistemleri	169
4.11.2. Bireysel Dijital Yardımcı ve Tablet Bilgisayarlar	171
4.11.3. Gelişmiş Yüksek Performanslı Sunucu Sistemler	173
4.12. Özet	177
4.13 Caliema Sorulari	177

Bölüm 5. İşletim Sistemleri Mimarisi ve Bileşenleri	179
Mesut RAZBONYALI	
5.1. Bilinen İşletim Sistemleri	180
5.1.1 Windows Ailesi	181
5.1.2. Linux Ailesi	181
5.1.3. UNIX İşletim Sistemi	182
5.1.4. VM İşletim Sistemi	182
5.1.5. Android İşletim Sistemi	183
5.2. İşletim Sisteminin Görevleri	183
5.3. İşletim Sistemlerinin Gelişim Evresi	184
5.4. İşletim Sistemi Türleri	186
5.5. İşletim Sistemi Mimari Bileşenleri	189
5.5.1. Bilgisayar Sistemi Kaynakları5.5.2. Çekirdek Sistem	190 191
5.6. Prosesler ve Proses Yönetimi	191
5.7. Bellek Yönetimi	195
5.7.1. Görüntü/Sanal Bellek Yapısı	197
5.7.2. Sayfalama	198
5.8. Özet	199
5.9. Çalışma Soruları	199
Bölüm 6. Algoritmalar	201
6.1. Algoritmanın Temel Özellikleri	201
6.2. Harzemli ve Harzemli'nin Algoritmaları	204
6.2.1. Harzemli'nin Algoritmaları	205
6.3. Arama ve Sıralama Algoritmaları	207
6.3.1. Sıralama Algoritmaları	209
6.3.1.1. Araya Sokma Sıralaması	210
6.3.1.2. Seçmeli Sıralama	212
6.3.1.3. Kabarcık Sıralaması	213
6.3.1.4. Birleşmeli Sıralama	215
6.3.1.5. Kümeleme Sıralaması	217
6.3.1.6. Hızlı Sıralama Algoritması	218
6.3.2. Arama Algoritmaları	220
6.3.2.1. Ardışıl Arama	221
6.3.2.2. İkili Arama	223
6.3.2.3. Çırpı Fonksiyonuyla Arama	225
6.3.3. Dizinleme Sistemiyle Arama	228
6.4. Algoritma Analizi	233

6.4.1. Algoritma Analizinde Temel Kavramlar	233
6.4.2. Program Çalışma Hızı Ve Karmaşıklık	236
6.4.3. Yürütme Zamanı Hesabı	237
6.4.4. Karmaşıklık ve Asimptotik İfadeler	241
6.4.5. Bellek Gereksinimi ve Alan Maliyeti	245
6.4. Özet	246
6.5. Çalışma Soruları	247
0.3. Çalışına soruları	247
Bölüm 7. Veri Modelleri ve Veri Yapıları	249
Toros Rifat ÇÖLKESEN	
7.1. Verilerin Yapısı ve Veriden Bilgiye Dönüşüm	250
7.2. Resim Formatları	252
7.3. Veri Modelleri ve Çözüm Olduğu Alanlar	252
7.3.1. Bağlantılı Liste Veri Modeli	253
7.3.2. Ağaç Veri Modeli	254
7.3.3. Graf Veri Modeli	255
7.3.4. Durum Makinası Veri Modeli	256
7.3.5. Veritabanı İlişkisel Veri Modeli7.3.6. Ağ Veri Modeli	257 258
7.4. Temel Veri Yapıları	259
7.4.1. Karakter	259
7.4.2. Tamsayı	261
7.4.3. Kesirli/Gerçel Sayı	264
7.4.4. Sözceler ve Metinsel İfadeler	265
7.4.5. Diziler ve Matrisler	266
7.5. Tanımlamalı Veri Yapıları	267
7.5.1. Topluluk Oluşturma	267
7.5.2. Ortaklık Oluşturma	268
7.6. Özet	269
7.7. Çalışma Soruları	269
Bölüm 8. Veritabanı Teorisi ve Uygulamaları	271
Dr. Ali NİZAM	
8.1. Veritabanı Kavramı ve İlişkisel Veritabanı	272
8.1.1. Veritabanının Sağladığı Temel Fonksiyonlar	272
8.1.2. İlişkisel Veritabanı	273
8.2. İlişkisel Cebir	276
8.2.1. İlişkisel Cebirde Operatörler	277
8 2 2 Bileske İslemleri	278

	8.2.3. Grup Tabanlı İşlemler	279
	8.2.4. İlişkisel Cebir Ağacı	280
8.3.	Standart SQL	280
	8.3.1. Verilerin Sorgulanması	281
	8.3.2. Verilerin Sıralanması	283
	8.3.3. Veri Grupları Üzerindeki İşlemler	284
	8.3.4. Alt Sorgu	285
	8.3.5. Bileşke İşlemi	287
	8.3.6. Kartezyen Çarpım	289
	8.3.7. Veri Kümeleri Üzerinde İşlem Yapan Operatörler	290
	8.3.8. Veri Düzenleme Komutları	291
	8.3.9. Veri Yapısı Tanımlama Komutları	292
	8.3.10. Hareket Yönetim Komutları	292
	8.3.11. Veri Kontrol Komutları	292
	8.3.12. Veri Üzerinde Kısıtlama Kuralları	292
	8.3.13. Görüntü Nesnesi	293
	8.3.14. SQL Tekrar Kullanımı	293
	8.3.15. SQL Komutlarının Verimliğinin Arttırılması	294
8.4.	Veri Modelleme	294
	8.4.1. Kavramsal Tasarım-Varlık İlişki Diyagramı	294
	8.4.2. Mantıksal Tasarımı	297
	8.4.3. Normalleştirme	297
	8.4.4. Denormalizasyon	298
	8.4.5. Fiziksel Tasarım ve Gerçekleştirme	298
	8.4.6. Veri Model Doğrulama ve Onaylama	298
8.5.	Veri Erişim Kanalları	299
8.6.	Veri Tutarlılığı ve Eşzamanlılık Kontrolü	300
	8.6.1. Hareket Yönetimi	300
	8.6.2. Seri ve Serileştirilebilir Zaman Planları	301
	8.6.3. Uygulama Geliştirme ve Eşzamanlılık	302
8.7.	Kurtarma Mekanizmaları	302
	8.7.1. Hareket Düzeyinde Çökmelere Yönelik Çözümler	302
	8.7.2. Bütünleşik Sistem Çökmelerinde Kurtarma	303
	8.7.3. Veri Yedekleme	304
8.8.	Veri Depolama ve Dosya Organizasyonu	304
	8.8.1. Dosya Biçimleri	305
	8.8.2. Kayıtların Organizasyonu	305
	8.8.3. İçerdikleri Kayıtların Yapısına Göre Dosyalar	305
8.9.	Dizin Yapıları	306
	8.9.1. Çeşitli dizin türleri	306
	8.9.2. Dizin Olustururken Dikkate Alınacak Faktörler	307

8.10. Sorgu Çalıştırma Süreci	307
8.10.1. Ayrıştırma Aşaması	307
8.10.2. Eniyileme Aşaması	307
8.10.3. Sorguların İşletilmesi	308
8.10.4. Veritabanı Tarafından Üretilen Planların Yapısı	309
8.11. Veritabanı Sistem Mimarileri	309
8.12. Diğer Veritabanı Türlerine Genel Bakış	311
8.12.1. Nesne İlişkisel Veritabanı Sistemleri	311
8.12.2. Veri Ambarı Sistemleri	312
8.12.3. Büyük Veri ve NoSQL	314
8.13. Veritabanı Güvenliği	315
8.13.1. Veritabanı Güvenlik Mekanizmaları	315
8.13.2. Hak ve Rol Kavramı	316
8.13.3. Satır ve Sütun Temelli Güvenlik	317
8.13.4. SQL Enjekte Etmeyi Önleme	317
8.14. Özet	318
8.15. Çalışma Soruları	318
Bölüm 9. Yazılım Mühendisliği	321
Dr. Erhan SARIDOĞAN	
9.1. Sistem ve Yazılım	322
9.1.1. Bilgisayar Sistemi Mühendisliği	322
9.1.2. Sistem Geliştirme Süreci	322
9.1.3. Yazılım Mühendisliği	324
9.2. Yazılım Mühendisliği Yöntembilimleri	324
9.2.1. Yazılım Geliştirme Standartları	324
9.2.2. Yazılım Geliştirme Modelleri	325
9.3. Yazılım Geliştirme Süreci	329
9.3.1. Yazılım İsterleri Çözümlemesi	329
9.3.2. Yazılım Tasarımı	333
9.3.3. Yazılım Gerçekleştirimi	336
9.3.4. Yazılım Testi	337
9.3.5. Yazılım Bakımı	339
9.4. Yardımcı Süreçler	339
9.4.1. Yazılım Nitelik Güvence	339
9.4.2. Yazılım Düzenleşim Yönetimi	340
9.4.3. Yazılım Proje Yönetimi	341
9.5. Özet	341
0.6 Calisma Sorulari	3/10

Bölüm 10. Yazılım Modelleme Dilleri	343
Toros Rifat ÇÖLKESEN	
10.1. Yazılımın Şekilsel Modellenmesi	345
10.2. Yazılım Sisteminin Tam İfadesi	347
10.3. Yazılım Modellemede Dilleri ve UML	349
10.4. Yazılım Modelleme Dillerinde Kullanılan Simgeler	350
10.4.1. Yapısal Şekiller ve Simgeler	350
10.4.2. İlişki Simgeleri	352
10.5. Birleşik Modelleme Dili - UML	354
10.5.1. Kullanım Senaryosu Şeması	355
10.5.2. Sınıf Şemaları	357
10.5.3. Ardışıklık Şeması	366
10.5.4. Durum Makinası Şeması	367
10.5.5. Nesne Şeması	368
10.5.6. Bileşen Şeması	368
10.5.7. Yerleştirme/Konuşlandırma Şeması	369
10.5.8. Diğer Şemalar: Etkinlik, Zamanlama, Profil	369
10.6. Özet	370
10.7. Çalışma Soruları	371
Bölüm 11. Kodlama ve Programlama Dilleri	373
11.1. Kodlama	374
11.1.1. Makine Kodu ve Assembly Dili	375
11.1.2. Assembly Dili ve Kodlama	375
11.1.3. Yapısal Kodlama	376
11.1.4. Nesneye Yönelik Kodlama	377
11.1.5. Hatasız Kodlama	379
11.2. Programlama Dilleri	381
11.2.1. Programlama Dillerinin Sınıflanması	381
11.2.2. Programlama Dillerinin Tarihçesi	382
11.2.3. Derleyici ve Yorumlayıcı Farkı	383
11.3. C Programlama Dili	385
11.3.1. C Dilinde Bilinmesi Gerekenler	385
11.3.2. C Dili Anahtar Sözcükleri	386
11.3.3. Bir C Programı	387
11.3.4. Yığın (Stack) Kullanımı	388
11.3.5. Bellek Düzeni ve Diziler	389
11.3.6. Değişkenleri Paketleyip Yeni Veri Türü Oluşturma	393
11.3.7. İşaretçiler	395
11.3.8. Fonksiyon Çağırma Yöntemleri	401
11.3.9. Fonksiyona Parametre Aktarımı	402

11.4. Web Tabanlı Programlama	406
11.4.1. HTML Belgesi Oluşturma	407
11.5. XML Dili	412
11.5.1. XML Belgeleri	413
11.6. JavaScript Dili	415
11.6.1. JavaScript Kodları	415
11.6.2. HTML Belgelerde JavaScript Kodu Kullanımı	416
11.6.3. JavaScript Dilinde Operatörler	417
11.6.4. Karşılaştırma ve Döngü İfadeleri	418
11.7. Özet	419
11.8. Çalışma Soruları	420
Bölüm 12. Nesneye Yönelik Tasarım Yaklaşımları	423
Dr. Ali NİZAM	
12.1. Nesnenin Temel Özellikleri	424
12.1.1. Nitelikler	425
12.1.2. Metotlar	427
12.1.3. Nesneye Erişim ve Kullanma	429
12.1.4. Nesnelerin Bellekteki Durumu	431
12.1.5. Yapıcılar	433
12.1.6. finalize Metodu	433
12.1.7. Statik Özellik ve Metotlar	433
12.2. Nesneler Arası İlişkiler	435
12.3. Kalıtım	435
12.3.1. Metot özelleştirme	437
12.3.2. super Anahtar Kelimesi	437
12.3.3. final Anahtar Kelimesi	438
12.3.4. Nesnelerin Ortak Metotları	438
12.4. Güvenlik ve Kapsülleme	438
12.4.1. Paket	438
12.4.2. Erişim düzenleyiciler	439
12.4.3. Kapsülleme	440
12.5. Çok Biçimlilik	441
12.5.1. Üst Türe Dönüşüm	442
12.5.2. Alt Türe Dönüşüm	444
12.6. Arayüz	445
12.8. Nesneye Yönelik Tasarım Desenleri	447
12.9. Özet	450
12.10. Çalışma Soruları	450

Bölüm 13. Sayısal Haberleşme ve Bilgisayar Ağları	453
Cengiz UĞURKAYA	
13.1. Bilgisayar Ağlarının Sınıflanması	454
13.1.1. Geleneksel Sınıflama	454
13.1.2. Çölkesen'in Sınıflaması	456
13.2. Bilgisayar Haberleşmesi için Standartlar Kümesi OSI	457
13.3. Sayısal İletişim Kavramları	461
13.3.1. Seri, Paralel, Tam-çift Yönlü ve Yarı-Çift Yönlü İletim	461
13.4. Veri Aktarımda Hata Sezme ve Düzeltme	462
13.4.1. Hata Sezme Teknikleri	463
13.4.1.1. Yankılama (Echoplex)	463
13.4.1.2. Toplama Sınaması (Checksum)	463
13.4.1.3. Eşlik Sınaması (Parity Check)	464
13.4.1.4. Boyuna Fazlalık Sınaması (LRC)	464
13.4.1.5. Çevrimli Fazlalık Sınaması (CRC)	465
13.4.2. Hata Düzeltme Teknikleri	469
13.4.2.1. Hamming Kodlaması	469
13.5. İletişim Kanalı Başarım Hesabı	471
13.6. Kablolama ve Kablosuz Bağlantı	472
13.7. Ağ Üzerine Çeşitli Kavramlar	474
13.8. Ağ Teknolojileri	476
13.8.1. Ethernet ve Türevleri	476
13.8.2. Jetonlu Halka ve Türevleri	477
13.8.3. Bazı WAN ve Uzak Bağlantı Teknolojileri	478
13.9. Özet	479
13.10. Çalışma Soruları	480
Bölüm 14. İnternet Mühendisliği	483
Cengiz UĞURKAYA	
14.1. İnternet'in Tekniği	484
14.2. TCP/IP Mimarisi ve Katmanları	485
14.2.1. Uygulama Katmanı Protokolleri	488
14.2.2. Ulaşım Katmanı Protokolleri	490
14.2.2.1. TCP (Transmission Control Protocol)	490
14.2.2.2. UDP (User Datagram Protocol)	493
14.2.3. Yönlendirme Katmanı Protokolleri	494
14.2.3.1. IP Yönlendirme Protokolü	494
14.2.3.2. ICMP (Internet Control Message Protocol)	496
14.3. Adres Dönüşüm Protokolleri	496
14.4. IP Adreslemede Temel Kavramlar	499
14.5. IPv4 Adresleme Mekanizması	501

14.5.1. Sınıflamalı IP Adres Grupları	503
14.5.2. Sınıflamasız IP Adresleme	506
14.6. Adreslerin Altağlara Bölünmesi	507
14.7. IPv6 Adresleme Mekanizması	510
14.8. Ağ Güvenliği	511
14.9. IPsec Güvenlik Protokolleri	514
14.9.1. IPsec Bileşenleri	516
14.9.2. IPsec Temel Protokolleri	517
14.9.3. IPsec Yardımcı Bileşenleri	519
14.9.4. IPsec Uygulama Modları	520
14.10. SSL Güvenlik Mekanizması	520
14.11. Özet	521
14.12. Çalışma Soruları	522
Bölüm 15. Yapay Zekâ ve Yapar Sinir Ağları	523
Dr. Zeki ÖZEN, Dr. Elif KARTAL ve Prof. Dr. Sevinç GÜLSEÇE	V
15.1. Yapay Zekâ	523
15.1.1. Yapay Zekânın Tanımı	523
15.1.2. Yapay Zekânın Kısa Tarihi	527
15.1.3. Yapay Zekâ Çalışma Alanları ve Güncel Yapay Zekâ Uygulamaları	528
15.1.3.1. Bulanık Mantık	529
15.1.3.2. Uzman Sistemler	530
15.1.3.3.Genetik Algoritmalar	530
15.2. Yapay Sinir Ağları	532
15.2.1. Bir Yapay Sinir Hücresinin Yapısı	532
15.2.2. Yapay Sinir Ağları Kısa Tarihi	533
15.2.3. Yapay Sinir Ağı Topolojisi	534
15.2.3.1. İleri Beslemeli Ağlar	535
15.2.3.2. Yinelemeli Ağlar	535
15.2.4. Yapay Sinir Ağlarında Öğrenme	536
15.2.4.1. Danışmanlı Öğrenme	538
15.2.4.2. Danışmansız Öğrenme	538
15.3. Yapay Sinir Ağı Modellerine Genel Bakış	539
15.3.1. McColloch-Pitts Nöron Modeli	539
15.3.2. Basit Algılayıcı Modeli	542
15.3.3. Gradyan İniş Hata Minimizasyonu Yöntemi ve Delta Kuralı	545
15.3.4. Geri Yayılım Alg. Çok Katmanlı Algılayıcı Modeli	546
15.3.5. Kendini Örgütleyen Haritalar	552
15.4. Yapay Sinir Ağlarının Kullanım Alanları	556
15.3. Özet	557
15.4. Calısma Soruları	557

Bölüm 16. Veri Madenciliği ve Veri Ambarları	559
Doç. Dr. Gökhan SİLAHTAROĞLU	
16.1. Veri Madenciliğinin Uygulama Alanları	560
16.2. Veri Madenciliği Modelleri	564
16.2.1 Sınıflandırma	564
16.2.2 Karar Ağaçları	566
16.2.3. Yapay Sinir Ağları	569
16.2.4. Mesafeye Dayalı Sınıflandırma Algoritmaları	572
16.2.5. Genetik Algoritmalar	573
16.2.6. İstatistiğe Dayalı Algoritmalar	576
16.2.7. Kümeleme	576
16.2.8. Bağlantı Analizi	580
16.2.9. Birliktelik Kuralları Keşfi	580
16.2.10. Örüntü Tanıma	582
16.2.11. Ardışık Zaman Örüntüleri	583
16.3. Veri Ambarları ve OLAP	584
16.4. Büyük Veri	589
16.5. Metin Madenciliği ve Metin Veri Ambarları	589
16.5.1 Metin Veri Ambarının Oluşturulması	591
16.6. Özet	593
16.7. Çalışma Soruları	594
Bölüm 17. Graf Teorisi ve Graf Temelli Çözülebilen Problemler	595
17.1. Grafların Matematiksel İfadesi	596
17.2. Graflar Üzerine Genel Tanımlar	598
17.3. Grafların Bellekte Tutulma Biçimleri	612
17.4. Graf Renklendirme	613
17.5. Graf Üzerinde Dolaşma	619
17.5.1. DFS Yöntemi; Önce Derinlik Araması	620
17.5.2. BFS Yöntemi; Önce Genişlik Araması	622
17.6. <i>Greedy</i> Karar Verme Yaklaşımı	624
17.7. Graflar Üzerinde Kısa Yol Problemi	627
17.7.1. Dijkstra'nın En Kısa Yol Algoritması	628
17.7.2. Bellman ve Ford'un En Kısa Yol Algoritması	632
17.7.3. Floyd'un En Kısa Yol Algoritması	632
17.8. En Küçük Yol Ağacı Problemi	634
17.8.1. Kruskal'ın En Küçük Yol Ağacı Algoritması	636
17.8.2. <i>Prim</i> 'in En Küçük Yol Ağacı Algoritması	639
17.8.3. Sollin'in En Kücük Yol Ağacı Algoritması	641

17.9. Gezgin Satıcı Problemi	643
17.10. Şebeke Akış Problemi	644
17.11. Özet	645
17.12. Çalışma Sorular	645
Bölüm 18. Ağaçlar Teorisi	647
18.1. Ağaç İfadesindeki Temel Kavramlar	648
18.2. Bilgisayar Biliminde Çok Kullanılan Ağaç Türleri	655
18.3. İkili Ağaçlar ve Tipik Uygulamaları	659
18.3.1. İkili Arama Ağaçları	659
18.3.2. İkili Ağaç Üzerinde Dolaşma	660
18.3.3. Bağıntı ve Fonksiyon Ağaçları	662
18.3.4. Kümeleme Ağacı	664
18.3.5. Kodlama Ağaçları	665
18.3.5.1. Huffman Kodlama Ağacı	668
18.3.5.2. Shannon-Fano Kodlama Ağacı	671
18.3.6. İkili Arama Ağaçları için Algoritmalar	672
18.4. Çeşitli Ağaç Yapıları	678
18.4.1. Sözlük Ağacı – <i>Trie</i> Ağacı	678
18.4.2. Aile İşaretçisi Ağacı	679
18.4.3. Komut Çözme Ağacı	680
18.5. Ağaçların Bellekte Tutulması	681
18.5.1. Düğüm Bağlantısıyla Ağaç Kurulması	681
18.5.2. İndis-Bağıntısıyla Ağaç Kurulması	682
18.6. Özet	685
18.7. Çalışma Soruları	685
Bölüm 19. Otomata Teorisi ve Sonlu Durum Makinaları	687
19.1. Durum Makinası Temel Kavramlar	688
19.2. Sonlu Durum Makinası	691
19.2.1. Makinaların Sınıflanması	694
19.3. Otomata Teorisi	700
19.3.1. Deterministik Sonlu Otomata	701
19.3.2. Deterministik Olmayan Sonlu Otomata	703
19.3.3. Yığınlı Otomatlar	704
19.4. Turing Makinesi	705
19.5. Biçimsel Diller ve Dilbilgisi	707
19.5.1. Chomsky Smiflamasi	707
19.6. Özet	709
19.0. Ozet	712

Bölüm 20. Bilgisayar Grafikleri ve Görüntü İşleme	715
Dr. Atınç YILMAZ	
20.1. Bilgisayar Grafikleri Nedir?	716
20.2. OpenGL Grafik Kütüphanesi	715
20.2.1. OpenGL Tabanlı Uygulama Geliştirme Arayüzleri	718
20.2.2. OpenGL Söz Dizimi	719
20.3. 2D Ve 3D Nokta ve Cisim Tanımı	720
20.3.1. 2-Boyutlu (2B) Cisimler İçin Temel İşlemler	721
20.3.2. 3 Boyutlu (3B) Cisimler İçin Temel İşlemler	723
20.4. Görüntü İşleme Nedir?	725
20.4.1. Görüntü İşlemede Temel Süzgeç Yapıları	727
20.4.2. Huffman Kodlaması	729
20.4.3. Histogram	730
20.4.3.1. Histogram Germe	731
20.4.3.2. Histogram Eşitleme	732
20.4.4. Filtreleme Operasyonları	734
20.4.4.1. Fourier Dönüşümü	734
20.3.4.2. Markov Rastgele Alan Süzgeci	735
20.4.4.3. İteratif Hücresel Görüntü İşleme Algoritması	736
20.4.4.4. Yönlendirmeli Süzgeçler	738
20.4.4.5. Geometrik Dönüşüm	739
20.4.5. Görüntü Segmentasyonu	740
20.4.5.1. Benzerlik Tabanlı Segmentasyon Algoritması	741
20.4.5.2. Süreksizlik Tabanlı Segmentasyon Algoritması	742
20.4.6. Görüntü İyileştirme	743
20.5. Özet	744
20.6. Çalışma Soruları	744
Ek A. EMO: Elektrik - Elektronik Mühendisliği Odası	745
Ek A. IEEE: Elektrik ve Elektronik (Bilgisayar) Mühendisleri Enstitüsü	747
Ek C. BMO: Bilgisayar Mühendisleri Odası	748
Kaynakça	749
Dizin	763

Önsöz

Bu kitap ile bilgisayar bilimi konularının minimum standardı ortaya koyulmaya çalışıl-mıştır. Bilgisayar alanında profesyonel çalışanların ve öğrencilerin bu konuları mutlaka bilmesi gerektiğini düşünüyoruz...

Bilgisayar bilimi, Türkçe özgün bir eser olarak eksik olan bir konu idi; bizler de bilgisayar bilimi konularında farkındalık yaratacak ve bu konuda temel referans oluşturacak bir eser hazırlama gerektiği konusunda hem fikir olduk. Bu amaçla kitabın içeriğinde neler olabileceği konusunu uzun süre araştırdık ve tartıştık. Başlangıçta 400 sayfa olmasını planladığımız bir kitap, üstelik bazı bölümleri çıkartmamıza rağmen tamı tamamına 768 sayfa oldu. Çünkü çok konu vardı ve bunları bilgisayar bilimi bakış açısıyla toparlayıp anlatmak bayağı güç oldu. Çünkü bilgisayar biliminin bir yanı matematik, bir yanı sayısal sistemler ve bir yanı da sosyal konulara kadar uzanıyordu. İşte bu kitapta, ben bilgisayar konusunda çalışıyorum diyen birinin bilmesi gereken en temel konular, farkındalık yaratılarak, toparlanmıştır.

Bilgisayar biliminin temel kitabı olmasını hedeflediğimiz "Bilgisayar Bilimine Giriş" adlı bu eserimizde; konular, kuramsal temeller ve uygulamalı konular olarak iki ana kısımda toplanmıştır. Konular ayrık matematiğin temel konularından başlayıp yapay zekâ, veri madenciliği, sayısal haberleşme ve bilgisayar ağları, bilgisayar grafiği ve görüntü işleme konularına kadar ilerlemiştir.

Kitabın konu açısından çok zengin olması ve çok yazarlı olması bazı zorlukları karşımıza çıkartmıştır. En büyük zorluk ta terminolojinin biraraya getirilmesinde oldu. Hem matematik hem de bilgisayar bilimlerinde kullanılan simgeler ve tanımlar arasında ortak bir sözdizim yapısı oluşturmamız gerekti. Simgeleri ve terimleri, oturmuş genel kabullere de bağlı kalarak konuların öğretilmesini kolaylaştıracağı düşüncesiyle Türkçe karşılıklarından üretildi.

Kitabın bazı bölümler, ele alış tarzı olarak çok uygun olduğu için daha önce yayımlanmış bazı kitap bölümleri izin alınarak bilgisayar bilimine uyarlanmıştır; yani biraz daha kuramsal hale getirilmiştir. Böylesi bölümleri daha önceki eserlerde gören okuyucularımızdan şimdiden, tekrar için, özür dileriz.

Sevgili gençler, biz bilgisayar bilimi konusunda olması gereken minimum standardın sınırlarını bu kitapla çizdiğimizi düşünüyoruz; daha da nitelikli eserlerin sizler tarafından üretilmesi dileğiyle...

Sevgilerimizle,

Toros Rifat ÇÖLKESEN

Kitap Hakkında

Bilgisayar mühendisliği, yazılım mühendisliği, yönetim bilişim sistemleri, enformatik, matematik-bilgisayar gibi bilgisayar ile ilgili tüm disiplinlerde bu kitapta toplanan konuların mutlaka bilinmesi gerektiğini düşünüyoruz. Bu konular mesleğimizin minimum standardını oluşturan temel bilgileri içermektedir... Daha sonra bu konuların üzerinde seçilen çalışma alanına uygun olarak uygulamaya yönelik bilgiler edinilebilir.

Bilgisayar biliminin temeli bilişim matematiğidir; yani uygulamalı ayrık matematiktir. Eğer, "matematik tüm bilimlerin kraliçesi" ise, "bilgisayar bilimi de katkısından dolayı tüm disiplinlerin kralıdır", denilebilir.

Ders Kitabi Olarak Kullanılırsa

Eğer kitabın bir derste yardımcı kaynak olarak kullanılması düşünülürse, dönem boyunca tüm bölümlere değinilmesi önerilir. Birkaç bölümde kalıp orada boğulmaktansa, iyi programla her bölüme başlayıp ders saatinde yetişmeyen kısmı, öğrencilerimize okuma ödevi olarak verilmelidir.

Daha Ayrıntılı Bilgi

Kitabımızın herbir bölümü başlı başına kitap olabilecek zenginliktedir; hatta bazı bölümlerden birkaç kitap bile üretilebilir. Konular hakkında daha ayrıntılı bilgi edinebilmek için o konuda yazılmış kitaplara başvurulmalıdır. Örneğin, kurumsal matematik konuları için "Bilişim Matematiği", veritabanı için "Veritabanı Teorisi", veri modelleri ve veri yapıları için "Veri Yapıları ve Algoritmalar", İnternet kodlaması için "Web Tabanlı Programlama" kitapları okunabilir.

Kullanılan Kısaltmalar

BFS Breadth First Search

CISC Complex Instruction Set Computer - Karmaşık Komut Kümeli Bilgisayar

DFS Depth First Search

DOSO Deterministik Olmayan Sonlu Otomata

DSO Deterministik Sonlu Otomata

EBAS En Büyük Artı Sayı
EKES En Küçük Eksi Sayı
FSM Finite State Machine

HTML HiperText Markup Language

IEEE The Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPsec Internet Protocol Security
LAN Local Area Network

Maksterm Maksimun terimler kanonik biçimi Minterm Minumum terimler kanonik biçimi

OLAP Online Analytical Processing
OLTP Online Transectional Processing

OS Operating System

RISC Reduced Instruction Set Computer - Azaltılmış Komut Kümeli Bilgisayar

RSA Ron Rivest, Adi Shamir ve Leonard Adleman

SDM Sonlu Durum Makinası
SQL Structured Query Language

SSL Secure Socket Layer

TCP/IP Transmission Control Protocol / Internet Protocol

WAN Wide Area Network

XML eXtensible Markup Language